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Abstract - A linear stability analysis is performed to determine the conditions marking the onset of 
longitudinal vortices in mixed convective flows in a semi-infinite porous medium adjacent to a horizontal 
impermeable surface. Two different aiding flows are considered: (1) flow past a horizontal impermeable 
surface with zero angle of incidence, and (2) stagnation point flow about a horizontal surface. For each 
problem, the basic state is assumed to be the steady two-dimensional boundary layer flow which is 
characterized by non-linear velocity and temperature profiles. The transient three-dimensional disturbances 
equations are simplified based on a scaling argument, and the resulting simplified equations are solved based 
on the local similarity method. The critical Peclet numbers and the associated wave numbers as a function of 
the mixed convection parameter for the two cases are obtained. For the vortex mode of instability, it is found 
that the stagnation point flow is more stable than the case of the horizontal aiding flow for the same value of 
the mixed convection parameter. In both cases, the effect of the external aiding flow is to suppress the onset of 

vortex instability in the porous layer adjacent to the horizontal bounding surface 

NOMENCLATURE 

dimensionless spanwise wave number ; 
lower limits in the integrals in equation (64); 

constant in wall temperature relation; 

integration constant in equation (56); 

constant in free stream velocity; 

integration constant in equation (54); 
superposition constant ; 
differentiation with respect to disturbances; 
parabolic cylinder function of order v ; 
dimensionless base state stream function ; 
dimensionless disturbance stream function; 

acceleration due to gravity ; 
dimensionless disturbance velocity in the x- 
direction ; 
complex number ; 
dimensionless wave number for mixed 

convection ; 
dimensionless wave number for free 
convection ; 
Darcy permeability ; 
exponent on wall temperature relation ; 
mixed convection parameter; 
exponent on free stream velocity; 

pressure; 
dimensionless pressure; 
local Peclet number ; 
Peclet number based on the characteristic 
length; 
local Rayleigh number ; 
Rayleigh number based on the characteristic 
length ; 

time ; 
temperature ; 
Darcy’s velocity in .x-direction; 
dimensionless Darcy’s velocity in x- 
direction ; 
Darcy’s velocity in y-direction ; 
dimensionless Darcy’s velocity in y- 
direction; 

Darcy’s velocity in z-direction ; 
dimensionless Darcy’s velocity in z- 
direction ; 
dimensional coordinate in downstream 
direction ; 
dimensionless coordinate in downstream 
direction ; 
dimensional coordinate normal to bounding 
surface ; 
dimensionless coordinate normal to bound- 
ing surface ; 
dimensional coordinate tangent to bounding 
surface ; 
dimensionless coordinate tangent to bound- 
ing surface. 

Greek symbols 

effective thermal diffusivity ; 
coefficient of thermal expansion ; 
thermal boundary layer thickness ; 
E = (PeJ”’ ; 
volumetric heat capacity of the fluid to that 
of the saturated porous medium; 
gamma function ; 
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A. function defined in equation (70) : 

P> fluid viscosity ; 
s’? independent variable in equation (55); 

ii1 
similarity variable: 
dimensionless base state temperature; 

0, dimensionless disturbance temperature; 

ti> stream function ; 

/‘, fluid density ; 
T. dimensionless time. 

Superscripts 

, amplitude function for disturbances ; 
* critical values: 

, dimensionless quantities. 

Subscripts 

0, basic undisturbed quantities ; 
1, disturbed quantities ; 
7z , condition away from the bounding surface; 

w, condition at the wall. 

I. INTRODUCTION 

THE PROBLEMS of onset of cellular conviction in a 

porous medium has received considerable attention in 
the last decade because of its applications to the 

transport processes occurring in geothermal reservoirs 

(see Witherspoon et a@~] and Cheng[2] for a review 

of literature). A linear stability analysis was performed 

by Lapwood[3] to study the onset of cellular con- 
vection in a porous medium bounded by two parallel 

horizontal impermeable surfaces heated from below. 

Lapwood’s work was subsequently extended by Katto 
and Masuoka[4], Kassoy and Zebib[S], and by 
Walker and Homsy[6], among others. Beck[7] con- 
sidered the effects of lateral walls on the onset of 

cellular convection in an enclosed three-dimensionai 
porous medium heated from below. The effects of 

inclination angle on the onset of longitudinal rolls in a 

porous medium bounded by parallel plates heated 
from below was investigated by Bories and Com- 
barnous[8]. The effects of vertical through flow on the 
onset of cellular convection ir, a porous medium 
heated from below have been studied by Wooding[9], 

Sutton[lO], and by Homsy and Sherwood[l I]. The 
onset of cellular convection in a porous medium 
bounded by two vertical impermeable surfaces with 
differential heating was investigated by GiIf[l2]. In all 
of these problems, the basic states are either motionless 
or one-dimensional uniform flow with temperature 
profiles depending on one spatial coordinate. 

Little work has been done, however, on the prob- 
lems of thermal instability in boundary layer flows in 
a porous medium adjacent to a heated or cooled 
impermeable surface, where the basic flow is charac- 
terized by non-parallel, two-dimensional profiles. In a 
recent paper, Hsu, Cheng and Homsy[l3] investigated 
the conditions marking the onset of vortex instability 
in free convection boundary layer flows in a porous 
medium adjacent to a horizontal surface. The occur- 

rence of this form of instability IS owing to lhe 

destabilizing effects of the component of buoyancy 
force normal to the surface. In the present paper. the 
effects of external aiding Rows on the onset of vortex 

instability in mixed convection in a porous medium 

adjacent to horizontal surfaces will be studied. Two 

cases with different external aiding flows will be 
considered : (1) flow past a horizontal impermeable 

surface with constant heat flux at zero angle of 
incidence, and (2) stagnation point tlow about a 
horizontal impermeable surface withy” I .x’. The ap- 

proach adopted in the present paper is similar to the 

previous work by Hsu, Cheng and Homsy[13] as well 
as by Hsu and Cheng[14]. wherein the three- 

dimensional disturbances are not assumed to be 

independent of itreamwise direction ~1 priori. This 
represents a major departure from the quasi-parallel 
models adopted in the earlier work on the correspond- 

ing problems in a viscous fluid[l5, 161. Instead, the 
governing equations for the three-dimensional distur- 
bances are simplified based on a scaling argument. As a 
result. the disturbances at the onset of vortex in- 

stability are shown to be confined within the boundary 
layer of the basic flow, which is consistent with the 

assumption of “bottling effects” invoked by Haaland 
and Sparrow[ 151. The simplified equations suggest the 

existence of a stream function for the secondary flow 
and the resulting equations admit a local similarity 

solution that lead to an eigenvalue problem. ‘The 
critical Peclet numbers and the associated wave num- 

bers as a function of the mixed convection parameter 

Ra/(Pe)’ ’ for the two cases are obtained. It is found 
that the effect of the external aiding flow is to suppress 

the onset of vortex instability in the porous layer 
adjacent to the horizontal surface. 

2. LINEAR STABILITY ANALYSIS 

Consider the problems of steady mixed convection 

in a semi-infinite porous medium bounded by a 
horizontal impermeable surface for the two situations 
shown in Fig. I. where the coordinates s and 2 are 

placed on the bounding surface with the coordinate J 
pointing vertically toward the poruu medium. Figs. 1 
(a) and (c) represent the case of external flow past 
heated and cooled surfaces at zero angle of incidence, 
while Figs. t(b)and (d) represent the case ofstagnation 
point flow about heated and cooled horizontal surfaces. 
The free stream velocity can be represented by 

U I = Bx” (with tz = 0 denoting the former case and 
n = 1 for the latter case). If the boundary layer 
thickness, S,, is thin, and if Darcy’s law is applicable, it 
has been shown that similarity solutions exist for the 
former problem if T, J- .x1 * (the constant heat Aux 
solution) and for the latter problem if 7, x s’[17]. 
The solutions are of the form 
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FIG. 1. Coordinate systems. 
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where Pe = u,xju is the Peclet number and m = 

(3n + 1)/2 (thus m = l/2,2 for n = 0 and 1); e&r) and 
fe(q) are the dimensionless temperature and stream 
function determined from 

f6 = -+, + &+3b], (4) 

e; = me,fb - 
( > 

y-L foe& (5) 

subject to the boundary conditions 

Q,(O) = 1, MO) = 0, 

e,w = 0, fbw = I, 

where 

&a, b) 

G’a, bl 

M G Ra/(Pe)3’2 - k&m* 

- -G- (a’BP2 

is a constant independent of x, which is the governing 
parameter for mixed convection in a porous medium 
adjacent to horizontal surfaces. For the case of forced 
convection, i.e. M = 0, equations (4) and (5) with 
boundary conditions equations (6) and (7) have the 
exact solution of the form 

fo = % (8) 

given by equations (l)-(7). To this end, the physical 
variables will now be decomposed into basic and 
infinitesimal disturbed quantities as 

7% Y, z, t) = TAX, Y) + T,(x, Y, 2, tb 

P(G y,z,t) = PIA% Y) + Plk Y,GQ, 

u(x, y, 2, t) = uok Y) + u,(x, Y, z, t), (10) 

6 y,z*t) = &Ax, Y) + u*(x, Y,Z,t), 

w(x, YJ, t) = WI@, Y,Z, t). 

Substituting equation (10) into the governing equa- 
tions for transient three-dimensional convective how 
in a porous medium, subtracting the boundary layer 
equations for the basic undisturbed flow, and after 
linearizing yields 

!2L+!3+!?$=o, 
ay (11) 

(12) 
K apt 

4=---t 
P ax 

, (13) 

K ah 
wl= -__, 

P az 04) 

where p z Jmy~ and D,(r”, is the parabolic 
cylinder function [18] of order v where v = ! a2T, =a __ 

a’T, aq 
ax2 + ayZ + ~~7’ 

) 
. (15) 

- [(4m + l)i+t + i)j. Some of the x-derivative terms in equations (ll)- 
A linear stability analysis will now be performed to (15) will now be shown to be smaller than other terms 

investigate the instability of the boundary layer flow as in the same equation and thus can be neglected. To this 
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end, we first recast the disturbances equations in the 
length scale of the basic ilow, i.e. 

X = x/l and Y = y/r:/, (1% b) 

where I: = (PeJ ’ ” and Pe, = u, //a is the Peclet 

number based on the characteristic length 1. The basic 
flow quantities will also be resealed as 

u. - x2’uo , 
a 

I/,=!!!?, and @o=&. 
a 

(l;a,b,c) 

so that Uo, V,, and O,, as well as their derivatives with 

respect to X and Y are of O(1) (see [17]). For vortex- 
roll disturbances, z and y are of the same scale; thus, 

according to equation (16b), we have 

z = z/d. (18) 

The disturbance velocity t’r from equation (13) is of 

O(Ra,) if 

@,=&, 
I 

(19) 

where AT, = Al” and Ra, = Kp.g/lAT,l/pa is the 
Rayleigh number based on 1. Since the similarity of the 

basic flow requires that M = Rn,/(Pe,)3’2 to be a 
constant, we have ur = O(Ra,) = 0(8-j) which follows 

from equation (13). Consequently, we have 

(18) may not be the right length scale for the distur- 
bances. From equation (25), Y and Z have to be 
resealed to 

V = Y i!K, z = z/r:. (26) 

We also need to rescale X into 

/? = x/1:, (27) 

in order to preserve the similarity characteristics 

between (y,z) and .x. From equation (24), a proper 

scale for P, is 

P, = PJE. (28) 

In terms of (2, tz) and P,, equations (21))(25) 
become 

C?V SW 
(;I EL + _.’ + 1 = 0, 

?r7 (7P ;12 
(29) 

(30) 

(31) 

(32) 

Al, 
ur =p 

c2 Kp, 
, and P, = ~~ (20) 

a pa 

The disturbance equations in terms of the new dimen- 

sionless variables are 

p2au’ &aW’-o 
ax ay az ’ (21) 

(23) 

where z = at/y12c:2. The first terms in equations (21) 
and (25) are the smallest terms in their respective 
equations and can therefore be neglected. Note that 
the last term (V,/c2)(a@,/aY) in equation (25) 
however, is larger than other terms by O(~/E~). This 
means that (X, YZ) as defined in equations (16) and 

where? = Z/F’. Note that in equation (33) no resealing 

for the terms dOo/aX and dOo/aY is required because 

these terms are the derivatives of the basic flow 

quantities which are already of 0( 1). 

We observe that (i) the resealing of (X, Y Z) into 
(8, t 2) suggests that the disturbances are confined in 
a length scale which is of O(F) smaller than the length 

scale of the basic flow; this confirms the “bottling 
effect” of Haaland and SparrowE 151; (ii) the omission 
of the terms &,/ax and a(a2T,/ax2) in equations (11) 
and (15), respectively, is consistent with the level of 
approximation of the basic flow. Note that although 

the term ul(aTo/dx) is of the same order as a(a2Tl/ax2) 
in the length scale (2, t 2) as seen from equation (33), 
u,(aT,/ax) will be retained in the numerical com- 
putations because it is of the same order with other 
convective terms in the scale of the basic flow [see 
equation (25)], and the inclusion of this term does not 
hinder further analysis as we shall see. 

We now return to equations (1 l)-(15) with the terms 
&,/ax and a(a’T,/dx’) neglected. The omission of 
&,/ax in equation (11) implies the existence of a 
stream function $r for the secondary flow such that 

w -s and 
Wl 

1- 
ay 

1 ‘1 = r’s 
(34) 

Eliminating pt from equations (12)-( 14) and with the 
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aid of equation (34), leads to 

(35) 

(36) 

au, _ a211/, 
aZ ------I axay 

a% ~ + a% P%PSK aT, - = _ _ .._ ~ _ . 
ay2 az2 Al az 

Equation (15) in terms of stream function $r and with 
the streamwise heat conduction term neglected is 

where 

and 

which follow from equation (2). 
At neutral stability, the vortex mode of the three- 

dimensional disturbances are of the form[13,14] 

$,(x, 41, z) = Il;(x, y)exp[iaz], 

ui(x, Y, 2) = u*(x, y)exp[iazl, (38) 

T,(x, Y,Z) = ?(x, y)exp[iaz], 

where a is the spanwise periodic wave number which is 
real. Substituting equation (38) into equations 
(35)-(37) yields 

(39) 

(41) 

Equations (39))(41) admit local similarity solution of 
the form 

&x. y) = ia Jo F(?, x), 

;(x, Y) = imG(tl,x), (42) 

Q-w, y) = ‘4xm O(& x), 

where F(q, x), G(q, x) and c;>(q, x) are determined from 

(m-2)~$+(2m-1): 
1 

=x& 

(43) 

F = - M(Pe)“2 k@ , (44) 

where k = ax/(Pe)“’ is the dimensionless wave num- 
ber. It is assumed that, after recasting in the similarity 
variable 9, the x-dependence of the variables is weak 
such that (a/ax) << (a~~~); then, the tast terms in 
equations (43) and (45) are of higher order in their 
respective equations and therefore can be neglected. 
Equations (43)-(45) can then be simplified to give 

G = ; [(m - 2)@‘F + (2m - l)DF], (46) 

(0’ - k2)F = -I’M(P~)“~~O, (47) 

(D2 _ kZ)@ = ,$b@ _ “f’ 
C i 

foD@ 

+ (pe)- l/Z 

[ 

q t& + m@, 1 G + (Pe)’ *’ 6&M’, (48) 

subject to boundary conditions 

F(O,x) = F(r;,x) = 0, (49) 

0(0,x) = @(X,X) = 0, (50) 

where D = d/d+ The dependence of F, G, and 0 on x 
in equations (46)-(50) is only parametric, i.e. F, G, and 
0 can be regarded as functions of q only. The 
assumption of the weak x-dependence and the result- 
ing solutions have been called the “local similarity” 
solution$19-211. Note that M = 0 is for the case of 
forced convection in a porous medium. Substituting G 
from equation (46) and 0 from equation (47) into 
equation (48) yields the following equation in terms 
of F 

(0’ - k’)‘F + 
! ! 

F foD(D2 - k2)F 

1 
- mf #I2 - k2)F 

x [(m - 2)qD2F + (2m - l)DF] 

+ h4PeOb kZF = 0, (51) 

subject to the boundary conditions 

F(0) = D’F(0) = 0, (52) 

F(x) = D’F(rj) = 0. (53) 

For a set of values of m, M and k, equation (51) with 
boundary conditions given by equations (52) and (53) 
constitutes an eigenvalue problem where Pe can be 
regarded as the eigenvalue. 



3. NUMERICAL SOLUTION OF THE 
ElCENVALUE PROBLEM 

The eigenvalue problem can best be solved numeri- 
cally by integrating equation (51) inward from u -+ X# The numerical solutions for the basic flow can now be 

(i.e. the edge of the boundary layer of the basic flow) to proceeded by guessing the values of A, and B, and 

q = 0 (at the wall). To start the numerical integration evaluating Bo, f$,, fo, and ,f‘b at q = q, from equations 

at q + ;c, asymptotic solutions for the basic and (58))(61), which are used as the initial values for the 

disturbed flow will now be sought. Runge-Kutta integration procedure to integrate 

Consider first the asymptotic solutions for the basic backward to 9 = 0. The boundary conditions at the 

flow. With the aid of equation (7a), equation (4) can be end point given by equation (6) will then be tested, and 

integrated twice to give the values of A, and B, will be adjusted based on the 

h=o, +Bo 
Newton-Raphson iteration method until equations 

(54) (6a, b) are satisfied. The numerical results obtained in 

where B, is a measure of the amount of fluid entrained this way for the basic flow agree with the straightfor- 

into the boundary layer induced by free convection. ward shooting method used by Cheng[l7]. It is 

Substituting equation (54) into equation (5) we have believed, however, the present method is superior 

because the boundary conditions at ty = ‘1, are exactly 
satisfied and that the values chosen for ‘1, are not 

required to be considerably larger than the boundary 

which has the solution 

Q0 = A, ee”14 D,(<), 

and consequently 

layer thickness. As a result, the required number of 
integration steps is reduced and the numerical pro- 

(56) cedure is stabilized. 

Attention is next given to the asymptotic behavior of 
F. As q + r equation (51) reduces to 

w. = - m+ 1 E--l 3 I 
A0e-~“4D,,+1(5), (57) (02 _ kz)zF + !?+ 

( ) 
(~7 + Bo)D(D2 - k’)F 

where 5 = A(rn + 1)/3](~, + II,), and A, is an in- 
- m(D’ - k’)F = 0, (62) 

tegration constant. It should be noted that the boun- where we have made use of boundary condition (7a) 
dary conditions at q = 0, i.e. equation (6a), cannot be and equation (54). Hence, from the boundary con- 
imposed to equation (55) since the equation is valid dition (53) we have 
only at qa. The asymptotic expansions for 0,(t) and 
t$([) at 5 -+ x are 

(0’ - k2)F = C2 e~iz’4DV1(<), (63) 

i 
1 _ I?&+! 

where v^ = -(4m + 1 + 3k2)/(m + 1). Solving for F 
(j,(t) = A, e-c2!2 (’ from equation (63) and imposing boundary conditions 

(53) gives 

+ “(“__y I)(” - 2)(” - 3) 
p-4p k . F(ql) = C, e-k’f, + C, 

i 

0 I 
2.4.5 e-k(rl, -VII 

* “I 
VI 

X 

s 
e ~k(q~-~l)e~‘:‘4D,~rZ)d~2d~l, (64) 

II? 

x l_(“+l)~t 
i 

(Lj + l)v(v - l)(v - 2) 
7+ 2.4.t4 

*... .(59) 
I 

where a, and a, are arbitrary constants, and t2 = <(q2) 
with q1 and qZ denoting the dummy variables. We shall 

The improved approximations for f0 and fb can now designate F,(qX ) and F,(qJ ) as 

be obtained by the integration ofequation (4) and with 
the aid of equations (58) and (59) to give 

F,(VX) = e-Q,. (65) 

194 c‘. ‘T. Hsrl and PING Cw?c; 

The two eigenfunctions for equation (48) are F,(n) and 
F*(q) whose linear combination is 

0~) = C,F,(II) + C,F,(q) (67) 
(60) 

where the asymptotic functions for F, and F, are given 
by equations (65) and (66) respectively. The values of 

F,(rl~),DF,(rl,), DZFI(rlT),andD3F,(~,)can now be 
found from equation (65). Similarly, the values of 
F,(;rl,) and its derivatives can be obtained from 
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equation (66). For simplicity, we choose aI = a2 = q I, 

so that F,(q, ) = DF,(lr) = 0. Hence, D*F,(v~ ) and 
D3F,(u ,) can be found from 

and 

D’F, = e-‘2’4Ddt), (68) 

D3F, = - 
-:‘,“$ 

D ; + I(<)> (69) 

which have similar asymptotic behavior as B,, and 0; as 

given by equations (56) and (57). Substituting equation 
(67) into equation (52) yields 

A(Pe;m,M,k) = F,(O)D’F,(O) - F,(O)D’F,(O) = 0. 

(70) 

For a given set of values of m, M, and k, condition (70) 

in general is not compatible unless Pe is the eigenvalue 

of the problem. To search for the eigenvalue Peat fixed 
values of m, M, and K, the numerical procedure can be 

proceeded as follows. Using Fi(ql), DF,(q,), D’F,(q, ), 
and D3Fi(q,) with i = 1, 2 as the starting values, the 

two paths of numerical integration were performed 
inward to q = 0 by means of the fourth-order 
Runge-Kutta method to obtain F,(O) and D’F,(O). The 
first path is for F,(q) and the second path for F,(q). The 

Kaplan filtering technique[22] was applied during the 
second path of integration to ensure that the numerical 
results of F,(q) and F,(q) are linearly independent. A 
systematic iteration of Pe was made on the basis of the 
Newton-Raphson method until the condition (70) is 

satisfied to within acceptable accuracy. 

4. RESULTS AND DISCUSSION 

Numerical solutions for the eigenvalue problem, 
equation (51) with boundary conditions (52) and (53), 

20 I?:, I 
pel v I 

ZL’ ” ’ 1 ’ 1 ’ 11 
0 08 16 24 3.2 40 

k 

are obtained for the two cases with m = 0.5 (n = 0) and 

m = 2 (n = 1) at selected values of M. Figure 2 shows 

the neutral stability curves for (i) a horizontal aiding 

flow over an impermeable surface with constant heat 
flux (m = 0.5 and n = 0), and (ii) stagnation point flow 
with T, J x2 (m = 2 and n = 1). The minimum values 
of Pe are the critical values for the onset of vortex 

instability. The values of the critical Peclet numbers 
and the associated wave numbers at various values of 

M are also tabulated in Table 1 for future reference. 
Note that the small values of Pe* at large M in Table 1 
do not indicate the failure of our scaling argument 
based on boundary layer approximations. Actually, 
when M is large (i.e. nearly free convection limit), 
the condition for the scaling argument is 
Ra1/3 = ,j,f1’3pe1:2 >> 1, 

The critical Peclet numbers and the associated 

dimensionless wave numbers as a function of the 
mixed convection parameter M are plotted in Figs. 3 
and 4 respectively. The asymptotes for pure free and 

pure forced convective flows are also plotted in the 
same graph for comparison. The asymptotes for pure 
free convection are obtained from Hsu, Cheng and 

Homsy[13] who found that the critical Rayleigh 
numbers Ra: and the associated wave number klf for 

the onset of vortex instability in a porous medium 
adjacent to horizontal surfaces are 

RatJ = 59.78 and kf = 0.81 for m = 0.5, 

Ra: = 128.63 and k; = 1.14 for m = 2, 

which can be rewritten as 

Pe* = 15.23(M)-2’3 and k* = 0.81(M)’ 3 

for m = 0.5, 

Pe* = 25.48(M)-2’3 and k* = 1.14(M)“3 

for m = 2, 

lOOr , I 

60 
t 

t 
40 

Pe 

20 

4- me20 
” = IO 

0 Of3 16 24 32 40 
k 

FIG. 2. Neutral stability curves for (a) flow past a horizontal impermeable surface with constant heat flux 
(m = 0.5 and n = 0) and (b) stagnation point flow about a horizontal impermeable surface with T, T x2 

(m=2andn=l). 
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Taole 1. Critical Peclet numbers and their associated wave numbers 

Rq(Pr)’ L 

Flow past a 
horizontal plate 

(ITI = 0.S and n = 0~ 
PC,* k* 

Stagnation point flow 
about a horizontal plate 

(no = 2.0 and n = 1.0) 
PC>* k* 

0.2 96.42 1.17 16X.2 I .93 
0.4 50.2 1 1.2 1 87.05 1.97 
0.6 34.68 1.25 59.83 2.02 
1 .O 22.09 1.31 37.84 2.09 
2.0 12.34 1.44 20.92 2.25 
5.0 6.0 1 1.71 10.07 2.59 
8.0 4.23 1.91 1.07 2.85 

15.0 2.68 2.24 4.47 3.28 

FIG. 3. Critical Peclet numbers vs mixed convection para- 
meter Ro/(Pc)~ ’ 

-~- Free convection asymptote 

03 ~ - Forced convection asymptote -.i _A-..._ --il_IIL- 
03 05 IO 20 50 IO 20 50 100 

Ro/(Pe)“* 

FIG. 4. Critical wave numbers vs mixed convection parameter 
Ro.l(Pr)” ‘. 

where we have used the relations Pe = (Ra/M)2’3 and 
k* = k;(M)1:3. The asymptotes for nearly pure forced 
convection are obtained by letting M -+ 0 in equation 
(51) while regarding MPe as the eigenvalue of the 
problem. The numerical computation for this case 
yields 

Pe* = 18.38(M)-’ and k* = 1.13 for m = 0.5, 

and 

Pe* = 32.34(M)-’ and k* = 1.88 for m = 2. 

The finite values of MPe* imply that Pe* + xj as 

M -+ 0, indicating forced convective flow about hori- 
zontal surfaces is stable to vortex instability. 

It is interesting to note that the neutral stability 

curves for combined free and forced convection lie 
above the asymptotes for pure free and nearly pure 

forced convection. (Fig. 3). When the value of M 
increases from M = 0, the combined free and forced 
convection flow has a higher critical Pe* than the pure 
forced convection flow (with M = 0), indicating the 

stabilizing effect of the term ur(~T’,/~x) which becomes 
negligible as M + 0. On the other hand, when M 
decreases from M -+ c/_, the combined free and forced 
convection flow has a higher critical Pe than the pure 

free convection flow (with M -+ z), indicating that the 
increase in the free stream velocity tends to stabilize 
the flow ; this is consistent with the results obtained by 

Hsu et a/.[131 who found that the inclusion of the term 
u,(XF,/dx) in the perturbation equations has stabilized 
the flow. The neutral stability curve for m = 2 (stag- 
nation point flow) lies above that for m = 0.5 (flow 
over a horizontal surface) and is therefore more stable 
for the vortex mode of instability. This is as expected 

since the magnitude of the transverse velocity toward 
the wall inside the boundary layer for the case of the 

stagnation point flow (with m = 2) is much larger than 
the corresponding case of a horizontal aiding flow 
(with m = 0.5) (see[l7]). The larger transverse 
(inward-directed) velocity for the stagnation point 
flow tend to suppress the growth of disturbances[23]. 

5. CONCLUDING REMARKS 

The present analysis is based on the assumptions 
that (i) Darcy’s law is applicable for non-isothermal 
flow in porous media, (ii) the boundary layer approxi- 
mations can be invoked to obtain the similarity 
solutions for the base flow. From previous theoretical 
and experimental studies[l,2], it is known that the 
first assumption is applicable if the Reynolds numbers 
(based on the square root of permeability) are less than 
one and if the ratio of permeability of the medium to 
the square of the characteristic length is small. For the 
second assumption, recent experiments by Evans and 
Plumb[24] on free convection boundary layers ad- 
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jacent to a vertical flat plate show that results based on 

similarity solutions agree well with experimental data 

for moderately large Rayleigh numbers. 
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INSTABILITE TOURBILLONNAIRE DE LA CONVECTION MIXTE 
DANS UN MILIEU POREUX SEMI-INFINI LIMITE PAR UNE SURFACE 

HORIZONTALE 

R&urn&Par une analyse IinCaire de stabilit6, on dttermine les conditions d’apparition des tourbillons 
longitudinaux pour les ecoulements de convection mixte dans un milieu poreux semi-infini limit6 par une 
surface impermkable et horizontale. On considdre deux koulements diffkrents: (1) &coulement sur une 
surface impermkable horizontale avec un angle d’incidence nul, (2) &coulement autour du point d’arr& sur 
une surface horizontale. Dans chaque probl&me, on suppose une couche limite bidimensionnelle caractCris& 
par des profils non 1inCaires de vitesse et de temp&rature. Les tquations aux perturbations tridimensionnelles 
sont simplifi6es 21 partir d’un argument d’bchelle et les tquations simples rtsultantes sont rCsolues g partir 
d’une m&hode de similitude locale. Le nombre de P&let critique et le nombre d’onde associd sont obtenus 
dans les deux cas en fonction du parambre de convection mixte. En ce qui concerne le mode d’instabilitt 
tourbillonnaire, on trouve que 1’8coulement g point d’arrit est plus stable que l’autre pour la mame valeur du 
paramktre. Dans les deux cas, l’effet de l%coulement externe est de supprimer l’apparition de l’instabilitb 

tourbillonnaire dans la couche poreuse adjacente B la surface horizontale. 

H.M.T. 2316-D 
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WIRBELINSTABILIT~T EINER GEMISCHTEN KONVEKTIONSSTR~MUNG 
IN EINEM HALBUNENDLICHEN, PORC)SEN MEDIUM, WELCHES 

DURCH EINE HORIZONTALE OBERFLiCCHE BEGRENZT IST 

Zusammenfassung-Es wird eine lineare Stabilititsanalyse durchgefiihrt, urn dte Bedingungen fiir das 
Auftreten von Llngswirbeln in gemischten Konvektionsstrtimungen in einem halbunendlichen, porcisen 
Medium zu bestimmen, das an eine ebene, undurchkissige Oberfllche grenzt. Zwei verschiedene 
HilfsstrGmungen werden betrachtet : (1)die Stramung hinter einer horizontalen, undurchlassigen Oberflgche 
mit Nullanstellwinkel und (2) die StaupunktstrGmung urn eine horizontale OberflBche. Fiir jedes Problem 
wird fiir den Grundzustand die stationare zweidimensionale Grenzschichtstriimung angenommen, die durch 
nichtlineare Geschwindigkeits- und Temperaturprofile gekennzeichnet ist. Die instation%ren 
dreidimensionalen St~rungsgleichungen werden aufder Grundlage eines MaBstabsfaktors vereinfacht, und 
die .-ich ergebenden vereinfachten Gleichur~gen werden mit Hilfe der Methode der ijrtlichen ~hnli~hkcit 
gel&t. Die kritischen Pellet-Zahlen und die zugehiirigen Weiiet~zahlen werden als F~~nktionen des 
Parameters der gemischten Konvektion erhalten. Fiir die Wirbelform der Instabilit~l wurde gefunden, daO 
die Staupunk:str~mung stabiler als die horizontale Hilfsstr~mung fiir den gleichen Wert des 
StrGmungsparameters ist. In beiden Fallen sol1 die Wirkung der Bul3eren Hilfsstriimung den Beginn der 

Wirbelinstabilitat in der poriisen Schicht, die an die horizontale OberflHche angrenrt, unterdriicken. 

BMXPEBAII HEYCTOI?-IMBOCTb CMEIUAHHOli KOHBEKUIIM B IIOJIYBECKOHEYHOti 
IIOPMCTOti CPEAE. OrPAHMYEHHOti I-OPM30HTAJIbHOti IIOBEPXHOCTbIO 

Axuso~auaap BbInonHeli arfanws nHseiieoE yc~~ii~BOfTi( c uenbr0 0npeAeneHHa yc:loerrii B~SHHKH~- 

BeHHanpOAOnbH~XB~X~~ BCMeLUaHHbiX KOHBeKTHBHbrXnOTOKaX B ~lO~y6eCKOHe~HOM~OpH~TOMC~Oe, 

np~Aera~~eM x rop~3oHTanbH0~ HeH~aHUaeMo~ HOBepXHwTH. Paccbfo-rpenbt sea Tffna TeYetiHa: 
(1) y rOpH3OHTa~bHO~ Hen~HHUae~O~ nOBepXH~T~ OpS HyJIeBOM yi-Ie HaTeKaHH~ K (2) B KPHTH- 

YeCKOii TOYKe y rOp~3OHTanbHO~ IiOBepXHWTH. B KaXCAOti fI3 3aAaV n~AHOna~~eTC~, YTO OCHOBRMM 

~~~HMOM aBnaeTca crauuoeapsoe AeyMepHoe TeYefiHe a norpafiwwio~ cnoe, xapaK~pH3y~~~~ 

HenKHe~H~MH npO@iJIflMifCKOp0CTAH TeMHepaTypbLYpaBHeHii54 HeCTaUHOHapHbiX TpeXMepHbtX 809 

MyWeHHfi yHpOLiJaKlTCSi 38 CYeT BBeAeHWi MaCmTa6a R pel.lIaHJTCR M'ZTOAOM JlOKaJlbHOrO rlOAobH% 

Ann Asyx cnyqaea nonyqeebr 3HaYeHHfl KpsTHrecKoro wcna IleKne u cooreeTcTeylowie 6onHOBw 

SiCJIa B JBBRCHMOCTH OT napaMeTpa CMeUIaHHOfi KOHBeKWiH. YCTaHOBJIeHO, VT0 Te'ieHHe B KpUTlf- 

'ECKOii TOqKe IIBJlSIeTCR 6onee yCTO#+iHBbIM, qeM BAOJIb rOpH30HTaJlbHOii llOBepXHOCTH Ilpki OLMOM tI 

TOM x(e 3HaqeHsiH napaMeTpa CMewaHHOfi KOHBCKUHH. B 060~~ CJIyvaRX SiHAy1~p0BaHHbdi n0lOK 

raCWT BWXpeByrO HeyCTOiiWBOCTb B HOpHCTOM CJIOC, UpHJleraKWeM K rOpH30H7ifJlbHOk OQWif#'l#tW- 

EOWefi FIOBepXHOCTH. 


