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Abstract — A linear stability analysis is performed to determine the conditions marking the onset of
longitudinal vortices in mixed convective flows in a semi-infinite porous medium adjacent to a horizontal
impermeable surface. Two different aiding flows are considered: (1) flow past a horizontal impermeable
surface with zero angle of incidence, and (2) stagnation point flow about a horizontal surface. For each
problem, the basic state is assumed to be the steady two-dimensional boundary layer flow which is
characterized by non-linear velocity and temperature profiles. The transient three-dimensional disturbances
equations are simplified based on a scaling argument, and the resulting simplified equations are solved based
on the local similarity method. The critical Peclet numbers and the associated wave numbers as a function of
the mixed convection parameter for the two cases are obtained. For the vortex mode of instability, it is found
that the stagnation point flow is more stable than the case of the horizontal aiding flow for the same value of
the mixed convection parameter. In both cases, the effect of the external aiding flow is to suppress the onset of
vortex instability in the porous layer adjacent to the horizontal bounding surface.
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NOMENCLATURE t, time;

a, dimensionless spanwise wave number ; T, temperature;
a, lower limits in the integrals in equation (64); u, Darcy’s velocity in x-direction;
A, constant in wall temperature relation; U, dimensionless Darcy’s  velocity X-
Ao,  integration constant in equation (56); direction;
B, constant in free stream velocity; v, Darcy’s velocity in y-direction;
By, integration constant in equation (54); £ d%mension]ess Darcy’s  velocity y-
C, superposition constant; direction;
D, differentiation with respect to disturbances; w, Darcy’s velocity in z-direction;;
D,,  parabolic cylinder function of order v; W,  dimensionless Darcy’s velocity z-
f. dimensionless base state stream function; direction;
F,  dimensionless disturbance stream function; x,  dimensional coordinate in downstream
g, acceleration due to gravity; direction;
G,  dimensionless disturbance velocity in the x- X,  dimensionless coordinate in downstream

direction; direction;
i complex number ; Vs dimensional coordinate normal to bounding
k, dimensionless wave number for mixed surface;

convection ; Y, dimensionless coordinate normal to bound-
kg, dimensionless wave number free ing surface;

convection; z, dimensional coordinate tangent to bounding
K, Darcy permeability ; surface;
m, exponent on wall temperature relation Z, dimensionless coordinate tangent to bound-
M,  mixed convection parameter; ing surface.
n, exponent on free stream velocity;
P, pressure; Greek symbols
P, dimensionless pressure; a, effective thermal diffusivity;
Pe, local Peclet number; B, coefficient of thermal expansion;
Pe;, Peclet number based on the characteristic b7,  thermal boundary layer thickness;

length; ¢, &= (Pe) 12,
Ra,, local Rayleigh number; 7, volumetric heat capacity of the fluid to that
Ra;, Rayleigh number based on the characteristic of the saturated porous medium;

length; T, gamma function;
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A, function defined in equation (70):

i, fluid viscosity;

g, independent variable in equation (55);
1, similarity variable

g, dimensionless base state temperature;

o, dimensionless disturbance temperature;
W, stream function;

£ fluid density;

T, dimensionless time.

Superscripts

", amplitude function for disturbances;
* critical values:

dimensionless quantities.

Subscripts
0, basic undisturbed quantities;
1, disturbed quantities ;
”, condition away from the bounding surface;
w, condition at the wall,

L INTRODUCTION

THE prOBLEMS of onset of cellular convection in a
porous medium has received considerable attention in
the last decade because of its applications to the
transport processes occurring in geothermal reservoirs
(see Witherspoon et al][1] and Cheng[2] for a review
of literature). A linear stability analysis was performed
by Lapwood[3] to study the onset of cellular con-
vection in a porous medium bounded by two parallel
horizontal impermeable surfaces heated from below.
Lapwood’s work was subsequently extended by Katto
and Masuokaf[4], Kassoy and Zebib[5], and by
Walker and Homsy[6], among others. Beck[7] con-
sidered the effects of lateral walls on the onset of
cellular convection in an enclosed three-dimensional
porous medium heated from below. The effects of
inclination angle on the onset of longitudinal rollsin a
porous medium bounded by parallel plates heated
from below was investigated by Bories and Com-
barnous[8]. The effects of vertical through flow on the
onset of cellular convection in a porous medium
heated from below have been studied by Wooding[9],
Sutton[10], and by Homsy and Sherwood[11]. The
onset of cellular convection in a porous medium
bounded by two vertical impermeable surfaces with
differential heating was investigated by Gill{ 12]. In all
of these problems, the basic states are either motionless
or one-dimensional uniform flow with temperature
profiles depending on one spatial coordinate.

Little work has been done, however, on the prob-
lems of thermal instability in boundary layer flows in
a porous medium adjacent to a heated or cooled
impermeable surface, where the basic flow is charac-
terized by non-parallel, two-dimensional profiles. In a
recent paper, Hsu, Cheng and Homsy[ 13] investigated
the conditions marking the onset of vortex instability
in free convection boundary layer flows in a porous
medium adjacent to a horizontal surface. The occur-

rence of this form of instability is owing to the
destabilizing effects of the component of buoyancy
force normal to the surface. In the present paper. the
effects of external aiding flows on the onsect of vortex
instability in mixed convection in a porous medium
adjacent to horizontal surfaces will be studied. Two
cases with different external aiding flows will be
considered: (1) flow past a horizontal impermeable
surface with constant heat flux at zero angle of
incidence, and {(2) stagnation point flow about a
horizontal impermeable surface with7, » x* The ap-
proach adopted in the present paper is similar to the
previous work by Hsu, Cheng and Homsy[ 13] as well
as by Hsu and Cheng[14]. wherein the three-
dimensional disturbances are not assumed to be
independent of streamwise direction « priori. This
represents a major departure from the quasi-parallel
models adopted in the earlier work on the correspond-
ing problems in a viscous fluid[15,16]. Instead, the
governing equations for the three-dimensional distur-
bances are simplified based on a scaling argument. Asa
result, the disturbances at the onset of vortex in-
stability are shown to be confined within the boundary
layer of the basic flow, which is consistent with the
assumption of “bottling effects™ invoked by Haaland
and Sparrow[ 15]. The simplified equations suggest the
existence of a stream function for the secondary flow
and the resulting equations admit a local similarity
solution that lead to an eigenvalue problem. The
critical Peclet numbers and the associated wave num-
bers as a function of the mixed convection parameter
Ra/(Pe)** for the two cases are obtained. It is found
that the effect of the external aiding flow is to suppress
the onset of vortex instability in the porous layer
adjacent to the horizontal surface.

2. LINEAR STABILITY ANALYSIS

Consider the problems of steady mixed convection
in a semi-infinite porous medium bounded by a
horizontal impermeable surface for the two situations
shown in Fig. 1, where the coordinates x and z are
placed on the bounding surface with the coordinate y
pointing vertically toward the porous medium. Figs. 1
(a) and (c) represent the case of external flow past
heated and cooled surfaces at zero angle of incidence,
while Figs. 1(b)and (d) represent the case of stagnation
point flow about heated and cooled horizontal surfaces.
The free stream velocity can be represented by
u, = Bx" {with n = 0 denoting the former case and
n=1 for the latter case). If the boundary layer
thickness, 8, is thin, and if Darcy’s law is applicable, it
has been shown that similarity solutions exist for the
former problem if T, x x!'? {the constant heat flux
solution) and for the latter problem if T, x x*[17].
The solutions are of the form

Tolx, vy =T, + Ax"6,(n), (h
Wolx, y) = \"'-\/""V(Pe)fo('l}- (2)
7= \/‘{ f’e)_v;‘x, {3)
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where Pe = u,x/x is the Peclet number and m =
(Bn+ 1)/2(thusm = 1/2, 2 forn = 0 and 1); 84(n) and
Jfo(n) are the dimensionless temperature and stream
function determined from

m—2
fo=-M {m(?o + (*’T>n96], 4
L ' m + 1 4
66 = mbo [ — (‘T">f090, )
subject to the boundary conditions
6,0 =1, fl0)=0, (6a,b)
Op(c) =0,  folw)=1, (7a,b)
where
M = Ra/(Pe)*? = 32%——’; K4 (a/B)'?

is a constant independent of x, which is the governing
parameter for mixed convection in a porous medium
adjacent to horizontal surfaces. For the case of forced
convection, ie. M =0, equations (4) and (5) with
boundary conditions equations (6) and (7) have the
exact solution of the form

fO =1, (8)

ﬁ
i

where & = /[(m + 1)/3]n and D) is the parabolic
cylinder function [18] of order v where v=
— [(@m + 1)/(m + D]

A linear stability analysis will now be performed to
investigate the instability of the boundary layer flow as

B0 = exp(E%/4)D,(8), )

given by equations (1)}~(7). To this end, the physical
variables will now be decomposed into basic and
infinitesimal disturbed quantities as

T(JC, y,Z,t) = TO(x9 Y) + Tl(x3 yszat)9

p('x’ y,z,l) = pO(x’ y) + pl(xs y,Z,t),

u(xa Y»Z, t) = uO(xa y) + ul(x, y’ Z, t)‘) (10)

U(X, yrz9t) = ”o(xa _V) + vl(xa y,Zat)»

wix, y,2,t) = wi(x, y,2,1).

Substituting equation (10) into the governing equa-
tions for transient three-dimensional convective flow
in a porous medium, subtracting the boundary layer
equations for the basic undisturbed flow, and after
linearizing yields

Ou;, dv,  Ow,
iy ta =0 (D
K dp,
- 1 3
ul ‘H ax’ (1‘-)
K /&8
vy = —{%— pmgﬁn), (13)
HAA\CY
K ¢
wy = —— L (14)
n 0z
~ T oT, T, o, o
T THegy Yo TG T i
T, 0T, T,
_a<ax2 5T T ) (15)

Some of the x-derivative terms in equations (11)-
(15) will now be shown to be smaller than other terms
in the same equation and thus can be neglected. To this
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end, we first recast the disturbances equations in the
length scale of the basic flow, i.e.

X =x/l and Y=yl (16a,b)

where ¢ = (Pe)”'? and Pe, = u, l/a is the Peclet
number based on the characteristic length /. The basic
flow quantities will also be rescaled as

.2 i
Uo = L luo' Vo = ilbfo and ©, = To
a 00T T AT
(17a,b,¢)

so that U, ¥, and @, as well as their derivatives with
respect to X and Y are of O(1) (see [17]). For vortex-

roll disturbances, z and y are of the same scale; thus,

according to equation (16b), we have

Z = zjel. (18)

The disturbance velocity v; from equation (13) is of
O(Ra)) if

Tl
AT
where AT, = Al™ and Ra, = Kp,gfATljpx is the
Rayleigh number based on I. Since the similarity of the
basic flow requires that M = Ra,/(Pe)*? to be a

constant, we have v, = O(Ra,) = O(¢™ *) which follows
from equation (13). Consequently, we have

0, = (19)

&, 2w,
V1 = " 1= 7 -
o a

&2lu .
U, = Y, and P, =-
P ua

The disturbance equations in terms of the new dimen-
sionless variables are

au, ov, oW,
e 21
“ox Tavtaz T @1
P,
=_ 1 22
U, Fie (22)
P
V, = — wl + MO, (23)
oP,
W, = — 1, 24
1 iz (24)
826291 0?0, +al®1 _ 9,
0xX? ay: ' oz? ot
00, 00, 00, V, 00,
SLTT0 25
+U°aX+V°ﬁY U"X+£2 oY 25)

where 1t = at/yl2¢?. The first terms in equations (21)
and (25) are the smallest terms in their respective
equations and can therefore be neglected. Note that
the last term (V,/e?)(0@,/0Y) in equation (25),
however, is larger than other terms by O(1/¢%). This
means that (X, Y, Z) as defined in equations (16) and
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(18) may not be the right length scale for the distur-
bances. From equation (25), Y and Z have to be
rescaled to

Y=Y, Z=2Z/ (26)

We also need to rescale X into
X =X/, (27)
in order to preserve the similarity characteristics

between (y,z) and x
scale for P, is

. From equation (24), a proper

=P /& (28)
In terms of (X ?,Z) nd P,, equations (21)—(25)
become
.:20U1 \ e 1 (";Wl -n (O
Cex Ty Tz Y “”
. 2P, .
L= g {30)
P
V= — o + MO, (31)
Y
eP,
W, = - =<, 32
f 3z (32)
and
270 (PO, POy o0,
0X? 0Y? o A ot
00, 00, , 6@0 00,
+1’U0 6X + ¢ VO 6—y~+% U1 ‘)X Vl ﬁY (33)

where T = 7/¢. Note that in equation (33) no rescaling
for the terms 00,/0X and 0©,/JY is required because
these terms are the derivatives of the basic flow
quantities which are already of O(1).

We observe that (i) the rescaling of (X, Y, Z) into
(X, Y, Z) suggests that the disturbances are confined in
a length scale which is of O(¢) smaller than the length
scale of the basic flow; this confirms the “bottling
effect” of Haaland and Sparrow{ 15]; (ii) the omission
of the terms du,/dx and «(6*T,/éx?) in equations (11)
and (15), respectively, is consistent with the level of
approximation of the basic flow. Note that although
the term u, (8T,/dx) is of the same order as a(9> T, /éx?)
in the length scale (X, ¥, Z) as seen from equation (33),
u,(0Ty/0x) will be retained in the numerical com-
putations because it is of the same order with other
convective terms in the scale of the basic flow [see
equation (25)], and the inclusion of this term does not
hinder further analysis as we shall see.

We now return to equations (11)-(15) with the terms
ou,/0x and a(d2T;/0x?) neglected. The omission of
Ou,/0x in equation (11) implies the existence of a
stream function ¥, for the secondary flow such that

2
s and v, = — »—%.
dy

Eliminating p, from equations (12)-

w, =

(34)

(14), and with the
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aid of equation (34), leads to

duy Y,
—-— = =, 35
0z Oxdy 33
Yy | Yy P.PgK 0T,
oy? M o2 w0z (36)

Equation (15) in terms of stream function ¥, and with
the streamwise heat conduction term neglected is

6T1 tu 6’1} + oT, + 0T,
6: 0 ox 0 ay " 0x
0y 0Ty ’n  PT
- ==+ 37
8z dy x 6y2+822 > 37)
where
Ny ,
uo =50 = Pe ol
and
6% o 2—m m+1 1z
= — P A
Vg x x I: e( 3 nfo 3 fo)}

which follow from equation (2).
At neutral stability, the vortex mode of the three-
dimensional disturbances are of the form[13, 14]

¥i(x, y,2) = J(x, y)exp[iaz],
ul(xy .Vaz) = ﬁ(xs y) exp[iaz],
Ty(x, y,z) = T(x, y)exp[iaz],

(38)

where a is the spanwise periodic wave number which is
real. Substituting equation (38) into equations
(35)-(37) yields

L
iai axdy (39)
R - iKp BgaT
(5—),2— Zw)-—- L LIS
aT oT T .0 LT,
Q(F*GT>—uo‘a““+vb‘;+ulq— lﬁi
(41)

Equations (39)-(41) admit local similarity solution of
the form

Y(x, y) = in\/(Pe) F(n,x),

. o
U(X, y) = ;C_\/ (Pe) G('L x)’ (42)
T(x, y) = Ax"O(n, x),
where F(, x), G(n, x) and @(n, x) are determined from
1 O*F oF 8°F

kG — = -2M——5+0C2m—-1)—|=x—

3[(m g+ @m l)an] Fre
(43)

62

(5‘ - kz)F = — M(Pe}'"? k©®, (44)
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0* m+1

e +(P) i

J 20
. (Tm_% 10, + me(,\G + (P OOKF + fox ",

(45)

where k = ax/(Pe)*’? is the dimensionless wave num-
ber. It is assumed that, after recasting in the similarity
variable 5, the x-dependence of the variables is weak
such that (0/0x) « (d/én); then, the last terms in
equations {43) and (45) are of higher order in their
respective equations and therefore can be neglected.
Equations (43)—-(45) can then be simplified to give

1
G = % (m — 2)nD*F + (2m — 1)DF],

(D? — k%) F = — M(Pe)'? k®,

(46)
(47)

(D* — K)O = mf,® — ('" + l)fOD(B

+ (Pe)~ 1 [n o + mBO}G + (Pe)!? G,kF, (48)
subject to boundary conditions
F(O,x) = F(=,x)=0, (49)
09(0,x) = O(x,x) =0, {50)

where D = d/dn. The dependence of F, G, and © on x
in equations (46)-(50) is only parametric, i.e. F, G, and
© can be regarded as functions of 5 only. The
assumption of the weak x-dependence and the result-
ing solutions have been called the “local similarity”
solutions[19-21]. Note that M = 0 is for the case of
forced convection in a porous medium. Substituting G
from equation (46) and ©® from equation (47) into
equation (48) yields the following equation in terms
of F

(p? —~1c2)2F+<"‘+ 1>f0 —KYF
M[m-2 —mfo(D* — k*)F
+ —| ————nfy + ml,
3 3
x[(m — 2nD*F + (2m — 1)DF]
+ MPef, k*F = 0, (51)
subject to the boundary conditions
F(0) = D*F(0) = (52)
F(c) = D*F() =0 (53)

For a set of values of m, M and k, equation (51) with
boundary conditions given by equations (52) and (53)
constitutes an eigenvalue problem where Pe can be
regarded as the eigenvalue.
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3. NUMERICAL SOLUTION OF THE
EIGENVALUE PROBLEM

The eigenvalue problem can best be solved numeri-
cally by integrating equation (51) inward from n — x
(i.e. the edge of the boundary layer of the basic flow) to
n = 0 (at the wall). To start the numerical integration
at n— o, asymptotic solutions for the basic and
disturbed flow will now be sought.

Consider first the asymptotic solutions for the basic
flow. With the aid of equation (7a), equation (4) can be
integrated twice to give

f(l:r,)+BO

where B, is a measure of the amount of fluid entrained
into the boundary layer induced by free convection.
Substituting equation (54) into equation (5), we have

(54)

0y + \/(m;) £ — mb, = 0, (55)
which has the solution
0o = Age " D(¢), (56)

and consequently

b= — \/<7v§:~1‘)Aoeﬁél”4 D, (%), (57)

where ¢ = /[(m + 1)/3](n.. + Bo), and 4, is an in-

tegration constant. It should be noted that the boun-

dary conditions at n = 0, i.e. equation {6a), cannot be

imposed to equation (55) since the equation is valid

only at 5. The asymptotic expansions for 6,(£) and
o(€) at & — o are

2&2
viv — 1)(v — 2)(v — 3)

‘m+ 1 o,
a@=—ﬁ%j)%ade“
\

v+ 1)y v+ vy — 1)y -2
X{l - 252) A )2('4'6“)( )i } (59
The improved approximations for f; and f§ can now
be obtained by the integration of equation (4) and with
the aid of equations (58) and (59) to give

. iM 52
Jo=mn,.+ By +m7'40" s

+1 B
Q2-m)y @2—m) m+1)
X{ 3 3¢ ﬂ i )P
+[m+<2;m><(v+1)2(2~v)+v>]/ézi...},
“3——_¥ 2, (60)
fo=1+ /(———m+l>MAoe“* 2 geet

(2_m)_(2—-m) (m+1>
X{ 3 ARSI AL
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+ [m + (3:1"7) (“ﬁ”—(rz - ”ﬂ lew e

i -3 2 I {
The numerical solutions for the basic flow can now be
proceeded by guessing the values of A, and B, and
evaluating 6, 0y, fo,and fg atn = n, from equations
(58)—(61), which are used as the initial values for the
Runge-Kutta integration procedure to integrate
backward to n = 0. The boundary conditions at the
end point given by equation (6) will then be tested, and
the values of A, and B, will be adjusted based on the
Newton-Raphson iteration method until equations
(6a, b) are satisfied. The numerical results obtained in
this way for the basic flow agree with the straightfor-
ward shooting method used by Cheng[17]. It is
believed, however, the present method is superior
because the boundary conditions at = 5, are exactly
satisfied and that the values chosen for 5, are not
required to be considerably larger than the boundary
layer thickness. As a result, the required number of
integration steps is reduced and the numerical pro-
cedure is stabilized.

Attention is next given to the asymptotic behavior of
F. As n > w7 equation (51) reduces to

(D? _k2)2F+(ﬂl+1

)(n, + B,)D(D? — k) F
—m(D*—k)F =0, (62)

where we have made use of boundary condition (7a)
and equation (54). Hence, from the boundary con-
dition (53) we have

(D* — K})F = C,e S DW(&), (63)

where v= —(4m + 1 + 3k?)/(m + 1). Solving for F
from equation (63) and imposing boundary conditions
(53) gives

"
e”k(n, =n

Fin,)=Cie™ + ¢, [

J o

L% .2,
X eik("rm)eﬂz"tDﬁ(fz)d'lzd’?u (64)

where a, and a, are arbitrary constants, and &, = &(n,)
with 7, and , denoting the dummy variables. We shall
designate F,(y,) and F,(n,) as

Fl(nf)z e””"-

nx m B 9
Fyln,) = e Mms Ty e km2mm) o= 3
ai az
Di(cz)dn, dny.

The two eigenfunctions for equation (48) are F, (1) and
F,(n) whose linear combination is

F(n) = CFi(n) + CF,(m)

where the asymptotic functions for F, and F, are given
by equations (65) and (66) respectively. The values of
Fy(n.), DF((n..), D*F{n..),and D*F (5 ) can now be
found from equation (65). Similarly, the values of
F,(n,) and its derivatives can be obtained from

(65)

(66)

(67)
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equation (66). For simplicity, we choose a;, = a, = 17,
so that F,(y,) = DF,(n,) = 0. Hence, D*F,(y,) and
D*F,(n,) can be found from

DF, = e ¥4 Dy(&), (68)

D= - \/(m : 1)‘37:2’/“ Dy 1(8),  (69)

and

which have similar asymptotic behavior as 8, and 6 as
given by equations (56) and (57). Substituting equation
(67) into equation (52) yields

A(Pe;m, M,k) = F,(0)D*F,(0) — F,(0)D*F,(0) = 0.
(70)

For a given set of values of m, M, and k, condition (70)
in general is not compatible unless Pe is the eigenvalue
of the problem. To search for the eigenvalue Pe at fixed
values of m, M, and K, the numerical procedure can be
proceeded as follows. Using Fy(1. ), DFi(n..), D*F{n ),
and D3F(n.) with i = 1, 2 as the starting values, the
two paths of numerical integration were performed
inward to =0 by means of the fourth-order
Runge-Kutta method to obtain F(0) and D> F(0). The
first path is for F,(n)and the second path for F,(n). The
Kaplan filtering technique[22] was applied during the
second path of integration to ensure that the numerical
results of Fy(n) and F,(n) are linearly independent. A
systematic iteration of Pe was made on the basis of the
Newton—Raphson method until the condition (70) is
satisfied to within acceptable accuracy.

4. RESULTS AND DISCUSSION

Numerical solutions for the eigenvalue problem,
equation (51) with boundary conditions (52) and (53),

60

40

20

Pe

are obtained for the two cases withm = 0.5 (n = 0)and
m =2 (n = 1) at selected values of M. Figure 2 shows
the neutral stability curves for (i) a horizontal aiding
flow over an impermeable surface with constant heat
flux (m = 0.5 and n = 0), and (ii) stagnation point flow
with T,, ¢ x2 (m = 2 and n = 1). The minimum values
of Pe are the critical values for the onset of vortex
instability. The values of the critical Peclet numbers
and the associated wave numbers at various values of
M are also tabulated in Table 1 for future reference.
Note that the small values of Pe* at large M in Table 1
do not indicate the failure of our scaling argument
based on boundary layer approximations. Actually,
when M is large (i.e. nearly free convection limit),
the condition for the scaling argument is
Ra'? = M3 Pet? » 1.

The critical Peclet numbers and the associated
dimensionless wave numbers as a function of the
mixed convection parameter M are plotted in Figs. 3
and 4 respectively. The asymptotes for pure free and
pure forced convective flows are also plotted in the
same graph for comparison. The asymptotes for pure
free convection are obtained from Hsu, Cheng and
Homsy[13] who found that the critical Rayleigh
numbers Ra¥ and the associated wave number k¥ for
the onset of vortex instability in a porous medium
adjacent to horizontal surfaces are

Ra¥ = 5978 and k} =081 form =05,
Ra} =12863 and k}=114 form=2,

which can be rewritten as

Pe* = 1523(M)~ %% and k* = 081(M)'?
for m = 0.5,
Pe* = 2548(M)~ 23 and k* = 1.14(M)'"?
for m =2,
100 T
o} Ro
r Pee 22
60
I U
40
| 5
Pe
20
20t
35
50
10 F— g
8r 8.0
6l
r 150 1
ar m =20
nTle |
0 o8 16 ) 24 32 40

F1G. 2. Neutral stability curves for (a) flow past a horizontal impermeable surface with constant heat flux
(m = 0.5 and n = 0) and (b) stagnation point flow about a horizontal impermeable surface with T, 7 x?
m=2andn=1)
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Table 1. Critical Peclet numbers and their associated wave numbers

Flow past a
horizontal plate

(m =05 and n = 0)

Raj{Pe)*? Pe* k*
0.2 96.42 1.17
0.4 50.21 1.21
0.6 34.68 1.25
1.0 22.09 1.31
2.0 12.34 1.44
50 6.01 1.71
8.0 423 1.91
150 2.68 224
100 T T
50+
I 2 ».  UNSTABLE
20 1
pe*
10—
5
L STABLE A
ot —— Forced convection asymptote
——— Free convection asymptote
Ll | : L]
l03 05 ke} 20 5’0 10 20 50 100

Ra/(Pe)

FiG. 3. Critical Peclet numbers vs mixed convection para-
meter Ra/(Pey’?.

-—— Free convection asympfote

o51 — — Forced convection asympiote
o3l R B
03 05 1.0 20 50 10 20 50 100
Ra/(Pe)*?

F1G. 4. Critical wave numbers vs mixed convection parameter
Ra/(Pe)*2.

where we have used the relations Pe = (Ra/M)*/® and
k* = k¥(M)'”. The asymptotes for nearly pure forced
convection are obtained by letting M — 0 in equation
(51) while regarding MPe as the eigenvalue of the
problem. The numerical computation for this case
yields

Pe* = 18.38(M)~! and k* =1.13 for m=0.5,
and
Pe* = 3234M)"' and k* =188 form=2.

Stagnation point flow
about a horizontal plate
(m=20and n = 10)

Pe* k*
168.2 1.93
87.05 1.97
59.83 2.02
37.84 2.09
20.92 225
10.07 2.59
107 2.85

447

3.28

The finite values of MPe* imply that Pe* — o as
M — 0, indicating forced convective flow about hori-
zontal surfaces is stable to vortex instability.

It is interesting to note that the neutral stability
curves for combined free and forced convection lie
above the asymptotes for pure free and nearly pure
forced convection. (Fig. 3). When the value of M
increases from M = 0, the combined free and forced
convection flow has a higher critical Pe* than the pure
forced convection flow (with M = 0), indicating the
stabilizing effect of the term u, (0 T,/0x) which becomes
negligible as M — 0. On the other hand, when M
decreases from M — o, the combined free and forced
convection flow has a higher critical Pe than the pure
free convection flow (with M — o), indicating that the
increase in the free stream velocity tends to stabilize
the flow ; this is consistent with the results obtained by
Hsu et al.[13] who found that the inclusion of the term
ug(0T,/0x) in the perturbation equations has stabilized
the flow. The neutral stability curve for m = 2 (stag-
nation point flow) lies above that for m = 0.5 (flow
over a horizontal surface) and is therefore more stable
for the vortex mode of instability. This is as expected
since the magnitude of the transverse velocity toward
the wall inside the boundary layer for the case of the
stagnation point flow (with m = 2)is much larger than
the corresponding case of a horizontal aiding flow
(with m =0.5) (see[17]). The larger transverse
(inward-directed) velocity for the stagnation point
flow tend to suppress the growth of disturbances[23].

5. CONCLUDING REMARKS

The present analysis is based on the assumptions
that (i) Darcy’s law is applicable for non-isothermal
flow in porous media, (ii) the boundary layer approxi-
mations can be invoked to obtain the similarity
solutions for the base flow. From previous theoretical
and experimental studies[1,2], it is known that the
first assumption is applicable if the Reynolds numbers
(based on the square root of permeability) are less than
one and if the ratio of permeability of the medium to
the square of the characteristic length is small. For the
second assumption, recent experiments by Evans and
Plumb[24] on free convection boundary layers ad-
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jacent to a vertical flat plate show that results based on
similarity solutions agree well with experimental data
for moderately large Rayleigh numbers.
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INSTABILITE TOURBILLONNAIRE DE LA CONVECTION MIXTE
DANS UN MILIEU POREUX SEMI-INFINI LIMITE PAR UNE SURFACE
HORIZONTALE

Résumé—Par une analyse linéaire de stabilité, on détermine les conditions d’apparition des tourbillons
longitudinaux pour les écoulements de convection mixte dans un milieu poreux semi-infini limité par une
surface imperméable et horizontale. On considére deux écoulements différents: (1) écoulement sur une
surface imperméable horizontale avec un angle d’incidence nul, (2) écoulement autour du point d’arrét sur
une surface horizontale. Dans chaque probléme, on suppose une couche limite bidimensionnelle caractérisée
par des profils non linéaires de vitesse et de température. Les équations aux perturbations tridimensionnelles
sont simplifiées a partir d’un argument d’échelle et les éguations simples résultantes sont résolues a partir
d’une méthode de similitude locale. Le nombre de Péclet critique et le nombre d’onde associé sont obtenus
dans les deux cas en fonction du paramétre de convection mixte. En ce qui concerne le mode d’instabilité
tourbillonnaire, on trouve que I'écoulement & point d’arrét est plus stable que I'autre pour la méme valeur du
paramétre. Dans les deux cas, 'effet de ’écoulement externe est de supprimer I'apparition de I'instabilité
tourbillonnaire dans la couche poreuse adjacente & la surface horizontale.
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WIRBELINSTABILITAT EINER GEMISCHTEN KONVEKTIONSSTROMUNG
IN EINEM HALBUNENDLICHEN, POROSEN MEDIUM, WELCHES
DURCH EINE HORIZONTALE OBERFLACHE BEGRENZT IST

Zusammenfassung—Es wird eine lineare Stabilititsanalyse durchgefiihrt, um die Bedingungen fiir das
Auftreten von Langswirbeln in gemischten Konvektionsstromungen in einem halbunendlichen, porosen
Medium zu bestimmen, das an eine ebene, undurchlissige Oberfliche grenzt. Zwei verschiedene
Hilfsstromungen werden betrachtet : (1) die Strémung hinter einer horizontalen, undurchlédssigen Oberfliche
mit Nullanstellwinkel und (2) die Staupunktstrémung um eine horizontale Oberfldche. Fiir jedes Problem
wird fiir den Grundzustand die stationire zweidimensionale Grenzschichtstromung angenommen, die durch
nichtlineare Geschwindigkeits- und Temperaturprofile gekennzeichnet ist. Die instationdren
dreidimensionalen Storungsgleichungen werden auf der Grundlage eines Malstabsfaktors vereinfacht, und
die cich ergebenden vereinfachten Gleichungen werden mit Hilfe der Methode der Srtlichen Ahnlichkeit
gelost. Die kritischen Peclet-Zahlen und die zugehGrigen Wellenzahlen werden als Funktionen des
Parameters der gemischten Konvektion erhalten. Fir die Wirbelform der Instabilitdt wurde gefunden, dafl
die Staupunkistrémung stabiler als die horizontale Hilfsstromung fiir den gleichen Wert des
Strémungsparameters ist. In beiden Fiillen soll die Wirkung der duBeren Hilfsstromung den Beginn der
Wirbelinstabilitat in der porosen Schicht, die an die horizontale Oberflache angrenzt, unterdriicken.

BUXPEBAA HE}/CTOF{‘{I’IBOCTL CMEUAHHOM KOHBEKLHHU B MMOJIYBECKOHEUHON
MOPUCTOW CPEJE, OFPAHUUYEHHON I'OPH3OHTAILHOM MOBEPXHOCTHIO

Annotais — BoinonHen aHaM3 THHEAHON YCTOHYHBOCTH C NENBIO ONPEACNCHHA YCIOBHH BO3HMKHO-
BEHHA NPOJOABHBIX BHXPeif B CMEIIAHHBIX KOHBEKTUBHBIX 10TOKAX B NONYDECKOHEUHOM NOPHCTOM CJIOE,
NPHJCTAIOUIEM K TOPH3IOHTANBHON HEMPORUIAEMON NOBEPXHOCTH. PAacCMOTpeHbl ABa THNA TEMEHHS !
(1} y ropusonTanbHOH HENPOHHUAEMOI TOBEPXHOCTH NPH HYJIEBOM YITIe HaTekauus u (2) B KPHTH-
HECKOH TOYKE Yy TOPH3OHTANBHOH MOBEPXHOCTH. B xax0#l M3 3a4ay npeanoNaraercs, 4TO OCHOBHBIM
PEXHMMOM SBITAETCS CTALMOHAPHOE [ABYMCPHOE TEYEHHE B NOTPAHHYHOM CJIO€, XapakTepHsylolueecs
HeHHEHHBIMH NPOGHIIMHE CKOPOCTH H TEMACPATYPhl. Y PDAaBHCHHS HECTAUHOHADHBIX TPEXMEPHBIX BO3-
MYHLIEHHA YIpOIIAIOTCH 33 CHET BBEleHHMs MacuiTaba H pewarTcs METOAOM JIOKAJLHOrO noxoOHs.
Jas nByx ciyvaeB NOMYYSHBl 3HAYEHMH KPHTHUECKOTro uHcia Ilexne M COOTBETCTBYIOLIME BOJHOBHE
YHCJIA B 33BHCHMOCTH OT NapaMeTpa CMEIIAHHOH KOHBEKUMH. YCTAHOBIEHO, YTO TEYEHHE B KPHTH-
4eCKO) Touke sBisercA Gonee yCcTOWYMBBIM, YeM BLOIbL FOPHIOHTAJILHOH NMOBEPXHOCTH NMPH ONHOM H
TOM K€ 3HAYCHHH MApaMeTpa CMEIIaHHONH KOHBEKUHMH. B 000MX cnyyasx HHMIYUMPOBAHHMI NOTOK
FaCHT BHXPEBYIO HEYCTOHYMBOCTB B MOPHCTOM CJIOE, NPHIIEraloeM K TOPH3OHTABHOH OrpaHAYHBA-
10llei TIOBEPXHOCTH.



